Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pflugers Arch ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613695

RESUMO

Neutrophil granulocytes play a crucial role in host defense against invading pathogens and in inflammatory diseases. The aim of this study was to elucidate membrane potential dynamics during the initial phase of neutrophil activation and its relation to migration and production of reactive oxygen species (ROS). We performed ROS production measurements of neutrophils from healthy C57BL/6J mice after TNFα-priming and/or C5a stimulation. The actin cytoskeleton was visualized with fluorescence microscopy. Furthermore, we combined migration assays and measurements of membrane potential dynamics after stimulating unprimed and/or TNFα-primed neutrophils with C5a. We show that C5a has a concentration-dependent effect on ROS production and chemokinetic migration. Chemokinetic migration and chemotaxis are impaired at C5a concentrations that induce ROS production. The actin cytoskeleton of unstimulated and of ROS-producing neutrophils is not distributed in a polarized way. Inhibition of the phagocytic NADPH oxidase NOX2 with diphenyleneiodonium (DPI) leads to a polarized distribution of the actin cytoskeleton and rescues chemokinetic migration of primed and C5a-stimulated neutrophils. Moreover, C5a evokes a pronounced depolarization of the cell membrane potential by 86.6 ± 4.2 mV starting from a resting membrane potential of -74.3 ± 0.7 mV. The C5a-induced depolarization occurs almost instantaneously (within less than one minute) in contrast to the more gradually developing depolarization induced by PMA (lag time of 3-4 min). This initial depolarization is accompanied by a decrease of the migration velocity. Collectively, our results show that stimulation with C5a evokes parallel changes in membrane potential dynamics, neutrophil ROS production and motility. Notably, the amplitude of membrane potential dynamics is comparable to that of excitable cells.

2.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187663

RESUMO

Pancreatic stellate cells (PSCs) are primarily responsible for producing the stiff tumor tissue in pancreatic ductal adenocarcinoma (PDAC). Thereby, PSCs generate a stiffness gradient between the healthy pancreas and the tumor. This gradient induces durotaxis, a form of directional cell migration driven by differential stiffness. The molecular sensors behind durotaxis are still unclear. To investigate the role of mechanosensitive ion channels in PSC durotaxis, we established a two-dimensional stiffness gradient mimicking PDAC. Using pharmacological and genetic methods, we investigated the role of the ion channels Piezo1, TRPC1, and TRPV4 in PSC durotaxis. We found that PSC migration towards a stiffer substrate is diminished by altering Piezo1 activity. Moreover, disrupting TRPC1 along with TRPV4 abolishes PSC durotaxis even when Piezo1 is functional. Hence, PSC durotaxis is optimal with an intermediary level of mechanosensitive channel activity, which we simulated using a numerically discretized mathematical model. Our findings suggest that mechanosensitive ion channels, particularly Piezo1, detect the mechanical microenvironment to guide PSC migration. Summary: Cells move towards regions with higher stiffness in a process called durotaxis. This study shows that ion channels Piezo1, TRPV4, and TRPC1 are crucial sensors in pancreatic stellate cells. They act together to orchestrate durotaxis of pancreatic stellate cells which may be relevant in pancreatic cancer.

3.
Cell Death Discov ; 10(1): 2, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177097

RESUMO

Almost all non-small cell lung cancer (NSCLC) patients initially responding to EGFR tyrosine kinase inhibitors (TKIs) develop acquired resistance. Since KCa3.1 channels, expressed in mitochondria and plasma membrane, regulate similar behavioral traits of NSCLC cells as EGFR, we hypothesized that their blockade contributes to overcoming EGFR-TKI resistance. Meta-analysis of microarray data revealed that KCa3.1 channel expression in erlotinib-resistant NSCLC cells correlates with that of genes of integrin and apoptosis pathways. Using erlotinib-sensitive and -resistant NSCLC cells we monitored the role of mitochondrial KCa3.1 channels in integrin signaling by studying cell-matrix adhesion with single-cell force spectroscopy. Apoptosis was quantified with fluorescence-based assays. The function of mitochondrial KCa3.1 channels in these processes was assessed by measuring the mitochondrial membrane potential and by quantifying ROS production. Functional assays were supplemented by biochemical analyses. We show that KCa3.1 channel inhibition with senicapoc in erlotinib-resistant NSCLC cells increases cell adhesion by increasing ß1-integrin expression, that in turn depends on mitochondrial ROS release. Increased adhesion impairs migration of NSCLC cells in a 3D matrix. At the same time, the senicapoc-dependent ROS production induces cytochrome C release and triggers apoptosis of erlotinib-resistant NSCLC cells. Thus, KCa3.1 channel blockade overcomes EGFR-TKI resistance by inhibiting NSCLC motility and inducing apoptosis.

4.
Exp Dermatol ; 33(1): e14983, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009253

RESUMO

Tumour cell detachment from the primary tumour is an early and crucial step of the metastatic cascade. At the single cell level, it was already shown that migrating melanoma cells establish both intra- and extracellular pH gradients and that the Na+ /H+ exchanger NHE1 accumulates at the leading edges to strengthen cell-matrix interactions. However, less is known about the role of NHE1 in collective cell migration and the specific pH microenvironment at tumour cell-cell contacts. We used MV3 melanoma cells transfected with a NHE1-expressing vector or a control vector. NHE1 localization at cell-cell contacts was assessed via immunofluorescence imaging. Collective migration was analysed by live-cell imaging. The NHE1 activity and the perimembranous pH were measured both intra- and extracellularly by ratiometric fluorescence microscopy. NHE1 clearly localizes at cell-cell contacts. Its overexpression further increases migratory speed and translocation in multidirectional pathway analyses. NHE1 overexpressing MV3 cells also move further away from their neighbouring cells during wound closure assays. pH measurements revealed that the NHE1 is highly active at cell-cell contacts of melanoma cells. NHE1-mediated pH dynamics at such contact sites are more prominent in NHE1-overexpressing melanoma cells. Our findings highlight the contribution of the NHE1 towards modulation and plasticity of melanoma cell-cell contacts. We propose that its localization and functional activity at cell-cell contacts promotes evasion of single melanoma cells from the primary tumour.


Assuntos
Melanoma , Humanos , Trocador 1 de Sódio-Hidrogênio/metabolismo , Melanoma/metabolismo , Linhagem Celular Tumoral , Trocadores de Sódio-Hidrogênio/metabolismo , Comunicação Celular , Concentração de Íons de Hidrogênio , Microambiente Tumoral
6.
Cancers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38136316

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) stands as a highly aggressive and lethal cancer, characterized by a grim prognosis and scarce treatment alternatives. Within this context, TRPV6, a calcium-permeable channel, emerges as a noteworthy candidate due to its overexpression in various cancers, capable of influencing the cell behavior in different cancer entities. Nonetheless, the exact expression pattern and functional significance of TRPV6 in the context of PDAC remains enigmatic. This study scrutinizes the expression of TRPV6 in tissue specimens obtained from 46 PDAC patients across distinct stages and grades. We manipulated TRPV6 expression (knockdown, overexpression) in the human PDAC cell lines Panc-1 and Capan-1. Subsequently, we analyzed its impact on multiple facets, encompassing Ca2+ influx, proliferation, apoptosis, migration, chemoresistance, and tumor growth, both in vitro and in vivo. Notably, the data indicate a direct correlation between TRPV6 expression levels, tumor stage, and grade, establishing a link between TRPV6 and PDAC proliferation in tissue samples. Decreasing TRPV6 expression via knockdown hampered Ca2+ influx, resulting in diminished proliferation and viability in both cell lines, and cell cycle progression in Panc-1. The knockdown simultaneously led to an increase in apoptotic rates and increased the susceptibility of cells to 5-FU and gemcitabine treatments. Moreover, it accelerated migration and promoted collective movement among Panc-1 cells. Conversely, TRPV6 overexpression yielded opposing outcomes in terms of proliferation in Panc-1 and Capan-1, and the migration of Panc-1 cells. Intriguingly, both TRPV6 knockdown and overexpression diminished the process of tumor formation in vivo. This intricate interplay suggests that PDAC aggressiveness relies on a fine-tuned TRPV6 expression, raising its profile as a putative therapeutic target.

7.
JCI Insight ; 8(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37643024

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) progresses in an organ with a unique pH landscape, where the stroma acidifies after each meal. We hypothesized that disrupting this pH landscape during PDAC progression triggers pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs) to induce PDAC fibrosis. We revealed that alkaline environmental pH was sufficient to induce PSC differentiation to a myofibroblastic phenotype. We then mechanistically dissected this finding, focusing on the involvement of the Na+/H+ exchanger NHE1. Perturbing cellular pH homeostasis by inhibiting NHE1 with cariporide partially altered the myofibroblastic PSC phenotype. To show the relevance of this finding in vivo, we targeted NHE1 in murine PDAC (KPfC). Indeed, tumor fibrosis decreased when mice received the NHE1-inhibitor cariporide in addition to gemcitabine treatment. Moreover, the tumor immune infiltrate shifted from granulocyte rich to more lymphocytic. Taken together, our study provides mechanistic evidence on how the pancreatic pH landscape shapes pancreatic cancer through tuning PSC differentiation.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Células Estreladas do Pâncreas/patologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Fenótipo , Homeostase , Fibrose , Neoplasias Pancreáticas
8.
Pflugers Arch ; 475(10): 1225-1240, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37566113

RESUMO

Pancreatic stellate cells (PSCs) that can co-metastasize with cancer cells shape the tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) by producing an excessive amount of extracellular matrix. This leads to a TME characterized by increased tissue pressure, hypoxia, and acidity. Moreover, cells within the tumor secrete growth factors. The stimuli of the TME trigger Ca2+ signaling and cellular Na+ loading. The Na+/Ca2+ exchanger (NCX) connects the cellular Ca2+ and Na+ homeostasis. The NCX is an electrogenic transporter, which shuffles 1 Ca2+ against 3 Na+ ions over the plasma membrane in a forward or reverse mode. Here, we studied how the impact of NCX activity on PSC migration is modulated by cues from the TME. NCX expression was revealed with qPCR and Western blot. [Ca2+]i, [Na+]i, and the cell membrane potential were determined with the fluorescent indicators Fura-2, Asante NaTRIUM Green-2, and DiBAC4(3), respectively. PSC migration was quantified with live-cell imaging. To mimic the TME, PSCs were exposed to hypoxia, pressure, acidic pH (pH 6.6), and PDGF. NCX-dependent signaling was determined with Western blot analyses. PSCs express NCX1.3 and NCX1.9. [Ca2+]i, [Na+]i, and the cell membrane potential are 94.4 nmol/l, 7.4 mmol/l, and - 39.8 mV, respectively. Thus, NCX1 usually operates in the forward (Ca2+ export) mode. NCX1 plays a differential role in translating cues from the TME into an altered migratory behavior. When NCX1 is operating in the forward mode, its inhibition accelerates PSC migration. Thus, NCX1-mediated extrusion of Ca2+ contributes to a slow mode of migration of PSCs.


Assuntos
Células Estreladas do Pâncreas , Trocador de Sódio e Cálcio , Humanos , Trocador de Sódio e Cálcio/metabolismo , Células Estreladas do Pâncreas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transdução de Sinais , Hipóxia , Cálcio/metabolismo
9.
Cancers (Basel) ; 15(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37174038

RESUMO

Pancreatic Ductal Adenocarcinoma (PDAC) is characterized by an acidic microenvironment, which contributes to therapeutic failure. So far there is a lack of knowledge with respect to the role of the acidic microenvironment in the invasive process. This work aimed to study the phenotypic and genetic response of PDAC cells to acidic stress along the different stages of selection. To this end, we subjected the cells to short- and long-term acidic pressure and recovery to pHe 7.4. This treatment aimed at mimicking PDAC edges and consequent cancer cell escape from the tumor. The impact of acidosis was assessed for cell morphology, proliferation, adhesion, migration, invasion, and epithelial-mesenchymal transition (EMT) via functional in vitro assays and RNA sequencing. Our results indicate that short acidic treatment limits growth, adhesion, invasion, and viability of PDAC cells. As the acid treatment progresses, it selects cancer cells with enhanced migration and invasion abilities induced by EMT, potentiating their metastatic potential when re-exposed to pHe 7.4. The RNA-seq analysis of PANC-1 cells exposed to short-term acidosis and pHe-selected recovered to pHe 7.4 revealed distinct transcriptome rewiring. We describe an enrichment of genes relevant to proliferation, migration, EMT, and invasion in acid-selected cells. Our work clearly demonstrates that upon acidosis stress, PDAC cells acquire more invasive cell phenotypes by promoting EMT and thus paving the way for more aggressive cell phenotypes.

11.
Biol Chem ; 404(4): 325-337, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36594183

RESUMO

Cancer is characterized by uncontrolled growth, invasion, and metastasis. In addition to solid cancer cells, cancer-associated fibroblasts (CAFs) play important roles in cancer pathophysiology. They arise from "healthy" cells but get manipulated by solid cancer cells to supply them and develop a tumor microenvironment (TME) that protects the cancer cells from the immune defense. A wide variety of cell types can differentiate into CAFs, including fibroblasts, endothelial cells, and epithelial cells. Precise Ca2+ regulation is essential for each cell including CAFs. The electrogenic Na+/Ca2+ exchanger (NCX) is one of the ubiquitously expressed regulatory Ca2+ transport proteins that rapidly responds to changes of the intracellular ion concentrations. Its transport function is also influenced by the membrane potential and thereby indirectly by the activity of ion channels. NCX transports Ca2+ out of the cell (forward mode) or allows its influx (reverse mode), always in exchange for 3 Na+ ions that are moved into the opposite direction. In this review, we discuss the functional roles NCX has in CAFs and how these depend on the properties of the TME. NCX activity modifies migration and leads to a reduced proliferation and apoptosis. The effect of the NCX in fibrosis is still largely unknown.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Células Endoteliais/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Fibroblastos/metabolismo , Cálcio/metabolismo
12.
ChemMedChem ; 18(2): e202200551, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36315933

RESUMO

The Ca2+ activated K+ channel KCa 3.1 is overexpressed in several human tumor cell lines, e. g. clear cell renal carcinoma, prostate cancer, non-small cell lung cancer. Highly aggressive cancer cells use this ion channel for key processes of the metastatic cascade such as migration, extravasation and invasion. Therefore, small molecules, which are able to image this KCa 3.1 channel in vitro and in vivo represent valuable diagnostic and prognostic tool compounds. The [18 F]fluoroethyltriazolyl substituted senicapoc was used as positron emission tomography (PET) tracer and showed promising properties for imaging of KCa 3.1 channels in lung adenocarcinoma cells in mice. The novel senicapoc BODIPY conjugates with two F-atoms (9 a) and with a F-atom and a methoxy moiety (9 b) at the B-atom led to the characteristic punctate staining pattern resulting from labeling of single KCa 3.1 channels in A549-3R cells. This punctate pattern was completely removed by preincubation with an excess of senicapoc confirming the high specificity of KCa 3.1 labeling. Due to the methoxy moiety at the B-atom and the additional oxyethylene unit in the spacer, 9 b exhibits higher polarity, which improves solubility and handling without reduction of fluorescence quantum yield. Docking studies using a cryo-electron microscopy (EM) structure of the KCa 3.1 channel confirmed the interaction of 9 a and 9 b with a binding pocket in the channel pore.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Masculino , Camundongos , Humanos , Animais , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Corantes Fluorescentes , Microscopia Crioeletrônica , Tomografia por Emissão de Pósitrons , Linhagem Celular Tumoral
13.
Biol Chem ; 404(4): 339-353, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36571487

RESUMO

Ion channels play an important role for regulation of the exocrine and the endocrine pancreas. This review focuses on the Ca2+-regulated K+ channel KCa3.1, encoded by the KCNN4 gene, which is present in both parts of the pancreas. In the islets of Langerhans, KCa3.1 channels are involved in the regulation of membrane potential oscillations characterizing nutrient-stimulated islet activity. Channel upregulation is induced by gluco- or lipotoxic conditions and might contribute to micro-inflammation and impaired insulin release in type 2 diabetes mellitus as well as to diabetes-associated renal and vascular complications. In the exocrine pancreas KCa3.1 channels are expressed in acinar and ductal cells. They are thought to play a role for anion secretion during digestion but their physiological role has not been fully elucidated yet. Pancreatic carcinoma, especially pancreatic ductal adenocarcinoma (PDAC), is associated with drastic overexpression of KCa3.1. For pharmacological targeting of KCa3.1 channels, we are discussing the possible benefits KCa3.1 channel inhibitors might provide in the context of diabetes mellitus and pancreatic cancer, respectively. We are also giving a perspective for the use of a fluorescently labeled derivative of the KCa3.1 blocker senicapoc as a tool to monitor channel distribution in pancreatic tissue. In summary, modulating KCa3.1 channel activity is a useful strategy for exo-and endocrine pancreatic disease but further studies are needed to evaluate its clinical suitability.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Neoplasias Pancreáticas , Humanos , Pâncreas , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
14.
Sci Rep ; 12(1): 22023, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539587

RESUMO

Glioblastoma (GBM) is the most aggressive glial tumor, where ion channels, including KCa1.1, are candidates for new therapeutic options. Since the auxiliary subunits linked to KCa1.1 in GBM are largely unknown we used electrophysiology combined with pharmacology and gene silencing to address the functional expression of KCa1.1/ß subunits complexes in both primary tumor cells and in the glioblastoma cell line U-87 MG. The pattern of the sensitivity (activation/inhibition) of the whole-cell currents to paxilline, lithocholic acid, arachidonic acid, and iberiotoxin; the presence of inactivation of the whole-cell current along with the loss of the outward rectification upon exposure to the reducing agent DTT collectively argue that KCa1.1/ß3 complex is expressed in U-87 MG. Similar results were found using human primary glioblastoma cells isolated from patient samples. Silencing the ß3 subunit expression inhibited carbachol-induced Ca2+ transients in U-87 MG thereby indicating the role of the KCa1.1/ß3 in the Ca2+ signaling of glioblastoma cells. Functional expression of the KCa1.1/ß3 complex, on the other hand, lacks cell cycle dependence. We suggest that the KCa1.1/ß3 complex may have diagnostic and therapeutic potential in glioblastoma in the future.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Transdução de Sinais/fisiologia , Carbacol
15.
Cancers (Basel) ; 14(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36230742

RESUMO

Ewing sarcoma (EwS) is a rare and highly malignant bone tumor occurring mainly in childhood and adolescence. Physiologically, the bone is a central hub for Ca2+ homeostasis, which is severely disturbed by osteolytic processes in EwS. Therefore, we aimed to investigate how ion transport proteins involved in Ca2+ homeostasis affect EwS pathophysiology. We characterized the expression of 22 candidate genes of Ca2+-permeable or Ca2+-regulated ion channels in three EwS cell lines and found the Ca2+-activated K+ channel KCa2.1 (KCNN1) to be exceptionally highly expressed. We revealed that KCNN1 expression is directly regulated by the disease-driving oncoprotein EWSR1-FL1. Due to its consistent overexpression in EwS, KCNN1 mRNA could be a prognostic marker in EwS. In a large cohort of EwS patients, however, KCNN1 mRNA quantity does not correlate with clinical parameters. Several functional studies including patch clamp electrophysiology revealed no evidence for KCa2.1 function in EwS cells. Thus, elevated KCNN1 expression is not translated to KCa2.1 channel activity in EwS cells. However, we found that the low K+ conductance of EwS cells renders them susceptible to hypoosmotic solutions. The absence of a relevant K+ conductance in EwS thereby provides an opportunity for hypoosmotic therapy that can be exploited during tumor surgery.

16.
Arch Pharm (Weinheim) ; 355(12): e2200388, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36161669

RESUMO

The calcium-activated potassium channel 3.1 (KCa 3.1) is overexpressed in many tumor entities and has predictive power concerning disease progression and outcome. Imaging of the KCa 3.1 channel in vivo using a radiotracer for positron emission tomography (PET) could therefore establish a potentially powerful diagnostic tool. Senicapoc shows high affinity and excellent selectivity toward the KCa 3.1 channel. We have successfully pursued the synthesis of the 18 F-labeled derivative [18 F]3 of senicapoc using the prosthetic group approach with 1-azido-2-[18 F]fluoroethane ([18 F]6) in a "click" reaction. The biological activity of the new PET tracer was evaluated in vitro and in vivo. Inhibition of the KCa 3.1 channel by 3 was demonstrated by patch clamp experiments and the binding pose was analyzed by docking studies. In mouse and human serum, [18 F]3 was stable for at least one half-life of [18 F]fluorine. Biodistribution experiments in wild-type mice were promising, showing rapid and predominantly renal excretion. An in vivo study using A549-based tumor-bearing mice was performed. The tumor signal could be delineated and image analysis showed a tumor-to-muscle ratio of 1.47 ± 0.24. The approach using 1-azido-2-[18 F]fluoroethane seems to be a good general strategy to achieve triarylacetamide-based fluorinated PET tracers for imaging of the KCa 3.1 channel in vivo.


Assuntos
Neoplasias , Canais de Potássio Cálcio-Ativados , Animais , Humanos , Camundongos , Radioisótopos de Flúor/metabolismo , Compostos Radiofarmacêuticos/farmacologia , Compostos Radiofarmacêuticos/metabolismo , Distribuição Tecidual , Canais de Potássio Cálcio-Ativados/metabolismo , Relação Estrutura-Atividade , Tomografia por Emissão de Pósitrons/métodos , Neoplasias/metabolismo
17.
Pflugers Arch ; 474(11): 1147-1157, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36152073

RESUMO

Lung cancer is one of the leading causes of cancer-related deaths worldwide. The Ca2+-activated K+ channel KCa3.1 contributes to the progression of non-small cell lung cancer (NSCLC). Recently, KCa3.1 channels were found in the inner membrane of mitochondria in different cancer cells. Mitochondria are the main sources for the generation of reactive oxygen species (ROS) that affect the progression of cancer cells. Here, we combined Western blotting, immunofluorescence, and fluorescent live-cell imaging to investigate the expression and function of KCa3.1 channels in the mitochondria of NSCLC cells. Western blotting revealed KCa3.1 expression in mitochondrial lysates from different NSCLC cells. Using immunofluorescence, we demonstrate a co-localization of KCa3.1 channels with mitochondria of NSCLC cells. Measurements of the mitochondrial membrane potential with TMRM reveal a hyperpolarization following the inhibition of KCa3.1 channels with the cell-permeable blocker senicapoc. This is not the case when cells are treated with the cell-impermeable peptidic toxin maurotoxin. The hyperpolarization of the mitochondrial membrane potential is accompanied by an increased generation of ROS in NSCLC cells. Collectively, our results provide firm evidence for the functional expression of KCa3.1 channels in the inner membrane of mitochondria of NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Cell Calcium ; 106: 102621, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35905654

RESUMO

Pancreatic stellate cell (PSC) activation is a major event occurring during pancreatic ductal adenocarcinoma (PDAC) development. Up to now mechanisms underlying their activation by mechanical cues such as the elevated tissue pressure in PDAC remain poorly understood. Here we investigate the role of one potential mechano-transducer, TRPC1 ion channel, in PSC activation. Using pre-activated human siTRPC1 and murine TRPC1-KO PSCs, we show that TRPC1 promotes αSMA (α-smooth muscle actin) expression, the main activation marker, in cooperation with the phosphorylated SMAD2, under normal and elevated pressure. Functional studies following TRPC1 silencing demonstrate the dual role of TRPC1 in the modulation of PSC proliferation and IL-6 secretion through the activation of ERK1/2 and SMAD2 pathways. Moreover, pressurization changes the mechanical behavior of PSCs by increasing their cellular stiffness and emitted traction forces in a TRPC1-dependent manner. In summary, these results point to a role of TRPC1 channels in sensing and transducing the characteristic mechanical properties of the PDAC microenvironment in PSCs.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , MAP Quinases Reguladas por Sinal Extracelular , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/metabolismo , Proteína Smad2/metabolismo , Canais de Cátion TRPC , Microambiente Tumoral , Neoplasias Pancreáticas
19.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743115

RESUMO

In the fight against prostate cancer (PCa), TRPM8 is one of the most promising clinical targets. Indeed, several studies have highlighted that TRPM8 involvement is key in PCa progression because of its impact on cell proliferation, viability, and migration. However, data from the literature are somewhat contradictory regarding the precise role of TRPM8 in prostatic carcinogenesis and are mostly based on in vitro studies. The purpose of this study was to clarify the role played by TRPM8 in PCa progression. We used a prostate orthotopic xenograft mouse model to show that TRPM8 overexpression dramatically limited tumor growth and metastasis dissemination in vivo. Mechanistically, our in vitro data revealed that TRPM8 inhibited tumor growth by affecting the cell proliferation and clonogenic properties of PCa cells. Moreover, TRPM8 impacted metastatic dissemination mainly by impairing cytoskeleton dynamics and focal adhesion formation through the inhibition of the Cdc42, Rac1, ERK, and FAK pathways. Lastly, we proved the in vivo efficiency of a new tool based on lipid nanocapsules containing WS12 in limiting the TRPM8-positive cells' dissemination at metastatic sites. Our work strongly supports the protective role of TRPM8 on PCa progression, providing new insights into the potential application of TRPM8 as a therapeutic target in PCa treatment.


Assuntos
Neoplasias da Próstata , Canais de Cátion TRPM , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Metástase Neoplásica/patologia , Próstata/patologia , Neoplasias da Próstata/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
20.
J Immunol ; 209(1): 136-144, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35715008

RESUMO

Neutrophil granulocytes are the first and robust responders to the chemotactic molecules released from an inflamed acidic tissue. The aim of this study was to elucidate the role of microenvironmental pH in neutrophil chemotaxis. To this end, we used neutrophils from male C57BL/6J mice and combined live cell imaging chemotaxis assays with measurements of the intracellular pH (pHi) in varied extracellular pH (pHe). Observational studies were complemented by biochemical analyses of leukotriene B4 (LTB4) production and activation of the Cdc42 Rho GTPase. Our data show that pHi of neutrophils dose-dependently adapts to a given pH of the extracellular milieu. Neutrophil chemotaxis toward C5a has an optimum at pHi ∼7.1, and its pHi dependency is almost parallel to that of LTB4 production. Consequently, a shallow pHe gradient, resembling that encountered by neutrophils during extravasation from a blood vessel (pH ∼7.4) into the interstitium (pH ∼7.2), favors chemotaxis of stimulated neutrophils. Lowering pHe below pH 6.8, predominantly affects neutrophil chemotaxis, although the velocity is largely maintained. Inhibition of the Na+/H+ exchanger 1 (NHE1) with cariporide drastically attenuates neutrophil chemotaxis at the optimal pHi irrespective of the high LTB4 production. Neutrophil migration and chemotaxis are almost completely abrogated by inhibiting LTB4 production or blocking its receptor (BLT1). The abundance of the active GTP-bound form of Cdc42 is strongly reduced by NHE1 inhibition or pHe 6.5. In conclusion, we propose that the pH dependence of neutrophil chemotaxis toward C5a is caused by a pHi-dependent production of LTB4 and activation of Cdc42. Moreover, it requires the activity of NHE1.


Assuntos
Leucotrieno B4 , Neutrófilos , Animais , Quimiotaxia , Quimiotaxia de Leucócito , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...